Направления развития компьютерной техники. Тенденции развития компьютеров Тенденции развития вычислительных систем

Появление ПК справедливо считают грациозной научно-технической революцией, сравнимой по масштабам с изобретением электричества, радио. К моменту рождения ПК вычислительная техника уже существовала четверть века. Старые ЭВМ были отделены от массового пользователя, с ними работали специалисты (электронщики, программисты, операторы). Рождение ПК сделало ЭВМ массовым инструментом. Облик ЭВМ кардинально изменился: она стала дружественной (т.е. способной вести культурный диалог с человеком на визуально комфортном экране). В настоящее время в мире используются сотни миллионов ПК как на производстве, так и в повседневной жизни.

Информатика и её практические результаты становятся важнейшим двигателем научно-технического прогресса и развития человеческого общества. Её технической базой являются средства обработки и передачи информации. Скорость их развития поразительна, в истории человечества этому бурно развивающемуся процессу нет аналога. Можно утверждать, что история вычислительной техники уникальна, прежде всего, фантастическими темпами развития аппаратных и программных средств. В последнее время идет активный рост слияния компьютера, средств связи и бытовых приборов в единый набор. Будут создаваться новые системы, размещенные на одной интегральной схеме и включающие кроме самого процессора и его окружения, еще и программное обеспечение.

Уже сейчас на смену универсальным компьютерам приходят новые устройства - смартфоны, решающие конкретный спектр задач своего владельца. Развивается система карманных компьютеров.

Характерной чертой компьютеров пятого поколения обязано быть внедрение искусственного интеллекта и естественных языков общения. Предполагается, что вычислительные машины пятого поколения будут просто управляемы. Пользователь сумеет голосом подавать машине команды.

Предполагается, что XXI век будет веком наибольшего использования достижений информатики в экономике, политике, науке, образовании, медицине, быту, военном деле.

Главной тенденцией развития вычислительной техники в настоящее время является дальнейшее расширение сфер внедрения ЭВМ и, как следствие, переход от отдельных машин к их системам - вычислительным системам и комплексам разнообразных конфигураций с широким спектром функциональных возможностей и черт.

Более перспективные, создаваемые на базе персональных ЭВМ, территориально распределенные многомашинные вычислительные системы. Вычислительные сети - ориентируются не столько на вычислительную обработку информации, сколько на коммуникационные информационные сервисы: электронную почту, системы телеконференций и информационно-справочные системы. Специалисты считают, что в начале XXI в. в цивилизованных странах произойдет смена основной информационной среды.

В последние годы, при разработке новых ЭВМ большее внимание уделялось сверхмощным компьютерам - суперЭВМ и миниатюрным, и сверхминиатюрные ПК. Ведутся поисковые работы по созданию ЭВМ 6-го поколения, базирующихся на распределенной нейронной архитектуре, нейрокомпьютеров. В частности, в нейрокомпьютерах могут употребляться уже имеющиеся специализированные сетевые МП - транспьютеры - микропроцессоры сети со встроенными средствами связи.

Примерная характеристика компьютеров шестого поколения.

Курсовая работа по теме:

ЭТАПЫ И ТЕНДЕНЦИИ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ И ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ


Введение

Глава 1. Информатизация общества

1.2 Информационная культура человека

Глава 2. Поколения ЭВМ. Классификация современных компьютеров по функциональным возможностям

2.1 Краткая история докомпьютерной эпохи

2.2 Открытия, предшествующие созданию компьютеров

2.3 Поколения ЭВМ

2.3.1 ЭВМ первого поколения

2.3.2 ЭВМ второго поколения

2.3.3 ЭВМ третьего поколения

2.3.4 ЭВМ четвертого поколения

2.3.5 ЭВМ пятого поколения

2.4 Тенденции развития вычислительной техники. Компьютер будущего

Глава 3. Информационные технологии

3.1 Информационные технологии. Определение, цель и основные свойства

3.2 Развитие информационных технологий

Заключение

Литература


Введение

На протяжении всей истории человечество овладело сначала веществом, затем энергией и, наконец, информацией. На заре цивилизации человеку хватало элементарных знаний и первобытных навыков, но постепенно объем информации увеличивался, и люди почувствовали недостаток индивидуальных знаний. Потребовалось научиться обобщать знания и опыт, которые способствовали правильной обработке информации и принятию необходимых решений, иными словами, необходимо было научиться целенаправленно работать с информацией и использовать для ее получения, обработки и передачи компьютерную информационную технологию. Усложнение индустриального производства, социальной, экономической и политической жизни, изменение динамики процессов во всех сферах деятельности человека привели, с одной стороны, к росту потребностей в знаниях, а с другой - к созданию новых средств и способов удовлетворения этих потребностей. В современном обществе к общей культуре человека добавилась еще одна категория – информационная.

Мир сейчас находится на пороге информационного общества. Началом такого перехода стало внедрение в различные сферы деятельности человека современных средств обработки и передачи информации. Переход от индустриального общества к информационному осуществляется благодаря информатизации общества – процессу, при котором создаются условия, удовлетворяющие потребности любого человека в получении необходимой информации. Основную роль, в информационном обществе, будет играть система распространения, хранения и обработки информации, образуя информационную среду, которая может обеспечить любому человеку доступ ко всей информации.

Новые технологии являются главной движущей силой в дополнение к существующим силам мирового рынка. Всего несколько ключевых компонентов - микропроцессоры, локальные сети, робототехника, специализированные АРМ, датчики, программируемые контроллеры - превратили в реальность концепцию автоматизированного предприятия.

В XXI веке образованный человек – это человек, хорошо владеющий информационными технологиями. Ведь деятельность людей все в большей степени зависит от их информированности, способности эффективно использовать информацию. Для свободной ориентации в информационных потоках современный специалист любого профиля должен уметь получать, обрабатывать и использовать информацию с помощью компьютеров, телекоммуникаций и других средств связи. Об информации начинают говорить как о стратегическом ресурсе общества, как о ресурсе, определяющем уровень развития государства. Уже сейчас при приеме на работу соискателям предъявляются требования по владению персональным компьютером и основными прикладными программами. Можно сделать вывод, что в современных условиях информационные технологии становятся эффективным инструментом совершенствования управления предприятием, особенно в таких областях управленческой деятельности, как стратегическое управление, управление качеством продукции и услуг, маркетинг, делопроизводство, управление персоналом.

Цель работы: изучив доступные источники информации, выяснить основные этапы и тенденции в развитии вычислительной техники и информационных технологий. Знание истории всегда помогает понимать новое, тем более при современном темпе развития информационных технологий. Для решения поставленной цели необходимо:

1. кратко изучить историю докомпьтерной эпохи и познакомиться с открытиями предшествующими появлению ЭВМ;

2. рассмотреть поколения ЭВМ и их отличительные особенности;

3. познакомится с основными тенденциями в развитии компьютерной техники;

4. выяснить смысл понятия «информационные технологии»;

5. кратко рассмотреть этапы развития информационного общества, его информатизацию

6. выяснить основные тенденции в развитии информационных технологий.


Глава 1. Информатизация общества

1.1 Этапы развития информационного общества. Его информатизация

В развитии человечества существуют четыре этапа, названные информационными революциями, которые внесли изменения в его развитие.

Первая – связана с изобретением письменности. Это обусловило качественный гигантский и количественный скачек в развитии общества. Знания стало возможно накапливать и передавать последующим поколениям, т.е. появились средства и методы накопления информации. В некоторых источниках считается, что содержание первой информационной революции составляет распространение и внедрение в деятельность и сознание человека языка.

Вторая (середина XVI века) – изобретение книгопечатания. Это дало в руки человечеству новый способ хранения информации, а так же сделало более доступным культурные ценности.

Третья (конец XIX века) – изобретение электричества. Появились телеграф, телефон и радио, позволяющие быстро передавать и накапливать информацию в любом объеме. Появились средства информационных коммуникаций.

Четвертая (70-е годы ХХ века) – изобретение микропроцессорной технологии и персональных компьютеров. Толчком к этой революции послужило создание в середине 40-х годов ЭВМ. Эта последняя революция дала толчок человеческой цивилизации для переходы от индустриального к информационному обществу- обществу, в котором большинство работающих занято производством, хранением, переработкой и реализацией информации, особенно высшей ее формой – знанием. Началом этого послужило внедрение в различные сферы деятельности человека современных средств обработки и передачи информации – этот процесс называется информатизацией.

Информатизация общества – процесс, при котором создаются условия, удовлетворяющие потребностям любого человека в получении необходимой информации (по закону РФ «Об информации, информатизации и защите информации» от 25 января, 1995 года).

До недавнего времени вместо термина «информатизация» использовался «компьютеризация», который означал развитие и внедрение компьютеров. Но информатизация общества является более широким понятием, так как сегодня главным являются не столько технические средства, сколько сущности и цели социально-технического процесса в целом. Компьютеры являются только частью процесса информатизации общества – ее базовой технической составляющей.

Основные черты информационного общества:

1. Увеличение объема информации приводит к тому, что человек сам не способен ее обработать, для этого ему необходимо использовать специальные технические устройства – компьютеры.

2. Движущей силой общества станет производство информационного продукта. Во второй половине ХХ века появился новый социальный слой «белые воротнички» - люди, не производящие непосредственно материальные ценности, а занятые обработкой информации.

3. Увеличится доля умственного труда, так как продуктом производства в информационного общества станут знания и интеллект.

4. Произойдет переоценка ценностей, уклада жизни и изменится культурный досуг. Уже сейчас компьютерные игры занимают большую часть свободного времени человека. Сейчас все большее распространение получают сетевые игры. Растет время проведенной в Интернете, здесь можно «путешествовать» по образовательным сайтам, виртуальным музеям, читать книги, общаться.

5. Будет развиваться компьютерная техника, компьютерные сети, информационные технологии.

6. Появятся новые электронные компьютеризированные бытовые приборы. Предполагается, что дома будут оснащаться единым информационным кабелем, который возьмет на себя все информационные связи, включая каналы кабельного телевидения и выход в Интернет. Специальный электронный блок будет контролировать всю бытовую технику.

7. Производством энергии и материального продукта будут заниматься машины, а человек главным образом обработкой информации.

8. В сфере образования будет создана система непрерывного образования.

9. Появится, и будет развиваться рынок информационных услуг.

Информационное общество кроме всех перечисленных выше благ несет для человека и множество этических и правовых проблем. К некоторым из них можно отнести:

- «информационные войны»;

Информационное неравенство;

Психологические проблемы связанные с виртуальной реальностью;

Сложность выбора качественной и достоверной информации из большого объема

В связи с переходом к информационному обществу к общей культуре человека добавилась – информационная культура. Которая характеризует умение человека целенаправленно работать с информацией и использовать ее для получения, обработки и передачи компьютерную информационную технологию, современные технические средства и методы.

История и тенденции развития вычислительной техники

Принципы построения компьютера

В 1946 году появилась первая электронная вычислительная машина (компьютер), что явилось громадным достижением человечества. В реализации проекта принимали активное участие такие крупные ученые, как К. Шеннон, Н. Виннер, Дж. фон Нейман и др.
Размещено на реф.рф
С этого момента началась эра вычислительной техники. За прошедшее время вычислительная техника, микроэлектроника и вся индустрия информатики стали одной из базовых составляющих мирового научно-технического прогресса. Их развитие осуществлялось темпами, которых не знала ни одна отрасль де-ятельности человека. Влияние вычислительной техники на всœе сферы деятельности человека продолжает расширяться. Сегодня компьютеры используются не только для автоматизации сложных расчетов, но и в управлении производственными процессами, в образовании, здравоохранении, экологии и т.п.

Математические основы автоматических вычислений были уже разработаны ранее (Г. Лейбниц, Дж. Буль, A. Тьюринг и др.), но появление компьютеров стало возможным только благодаря развитию электронной техники. Многократные попытки создания разного рода автоматических вычислительных устройств (от простейших счетов до механических и электромеханических вычислителœей) не привели к созданию надежных и экономически эффективных машин.

Появление электронных схем сделало возможным построение электронных вычислительных машин.

Электронная вычислительная машина (ЭВМ) , или компьютер , - это комплекс аппаратных и программных средств, предназначенный для автоматизации подготовки и решения задач пользователœей. Следует отметить, что в настоящее время термин "электронная вычислительная машина" практически не используется, уступив место термину "компьютер".

Под пользователœем понимают человека, в интересах которого проводится обработка данных. В качестве пользователя могут выступать заказчики вычислительных работ, программисты, операторы.

Компьютеры являются универсальными техническими средствами автоматизации вычислительных работ, то есть они способны решать любые задачи, связанные с преобразованием информации. При этом подготовка задач к решению была и остается до настоящего времени достаточно трудоемким процессом, требующим от пользователœей во многих случаях специальных знаний и навыков. Как правило, время подготовки задач во много раз превышает время их решения.

Важно заметить, что для снижения трудоемкости подготовки задач к решению, более эффективного использования отдельных технических, программных средств и компьютера в целом, а также облегчения их эксплуатации создается специальный комплекс программных средств. Обычно аппаратные и программные средства взаимосвязаны и объединяются в одну структуру.

Структура представляет собой совокупность элементов и их связей. Учитывая зависимость отконтекста различают структуры технических, программных, аппаратно-программных и информационных средств.

Часть программных средств обеспечивает взаимодействие пользователœей с компьютером и является своеобразным "посредником" между ними. Она получила название "операционная система" и является ядром программного обеспечения.

Под программным обеспечением понимают комплекс программных средств регулярного применения, создающий необходимый сервис для работы пользователœей.

Программное обеспечение (ПО) отдельных компьютеров и вычислительных систем (ВС), созданных на их основе, может сильно различаться составом используемых программ, который определяется классом используемой вычислительной техники, режимами ее применения, содержанием вычислительных работ пользователœей и т.п. Развитие ПО в значительной степени носит эволюционный и эмпирический характер, но можно выделить закономерности в его построении.

В общем случае процесс подготовки и решения задач предусматривает обязательное выполнение следующей последовательности этапов: формулировка проблемы и математическая постановка задачи; выбор метода и выработка алгоритма решения; программирование (запись алгоритма) с использованием некоторого алгоритмического языка; планирование и организация вычислительного процесса - порядка и последовательности использования ресурсов компьютеров и вычислительных систем (ВС); формирование "машинной программы", то есть программы, которую непосредственно будет выполнять компьютер; собственно решение задачи - выполнение вычислений по готовой программе.

По мере развития вычислительной техники автоматизация этих этапов идет снизу вверх. На пути развития электронной вычислительной техники обычно выделяют четыре поколения компьютеров, отличающихся элементной базой, функционально-логической организацией, конструктивно-технологическим исполнением, программным обеспечением, техническими и эксплуатационными характеристиками, степенью доступа к ресурсам со стороны пользователœей.

Смене поколений сопутствует изменение базовых технико-эксплуатационных и технико-экономических показателœей компьютеров и в первую очередь таких, как быстродействие, емкость памяти, надежность и стоимость. При этом одной из базовых тенденций развития было и остается стремление уменьшить трудоемкость подготовки программ решаемых задач, облегчить связь пользователœей с компьютерами, повысить эффективность использования последних. Это диктовалось и диктуется постоянным ростом сложности и трудоемкости задач, решение которых возлагается на компьютеры в различных сферах их применения.

Возможности улучшения технико-эксплуатационных показателœей компьютеров в значительной степени зависят от элементов, используемых для построения их электронных схем. По этой причине при рассмотрении этапов развития компьютеров каждое поколение в первую очередь характеризуется используемой элементной базой.

Основным активным элементом компьютеров первого поколения являлась электронная лампа, остальные компоненты электронной аппаратуры - это обычные резисторы, конденсаторы, трансформаторы. Для построения оперативной памяти уже с середины 50-х годов начали применяться специально разработанные для этой цели элементы - ферритовые сердечники с прямоугольной петлей гистерезиса. В качестве устройства ввода-вывода сначала использовалась стандартная телœеграфная аппаратура (телœетайпы, ленточные перфораторы, трансмиттеры, аппаратура счетно-перфорационных машин), а затем специально были разработаны электромеханические запоминающие устройства на магнитных лентах, барабанах, дисках и быстродействующие печатающие устройства.

Компьютеры этого поколения имели значительные размеры, потребляли большую мощность. Быстродействие этих машин составляло от нескольких сотен до нескольких тысяч операций в секунду, емкость памяти - несколько тысяч машинных слов, надежность исчислялась несколькими часами работы.

В этих ЭВМ автоматизации подлежал этап выполнения вычислений, так как у них практически отсутствовало какое-либо программное обеспечение. Все этапы подготовки пользователь должен был готовить вручную самостоятельно, вплоть до получения машинных кодов программ. Трудоемкий и рутинный характер этих работ был источником большого количества ошибок в заданиях. По этой причине в компьютерах следующих поколений появились сначала блоки программ, а затем целые программные системы, облегчающие процесс подготовки задач к решению.

На смену лампам пришли транзисторы в машинах второго поколения (начало 60-х годов). Применение постоянно совершенствуемых транзисторов позволило преобразовать окружающий человека мир (радио, телœевидение, бытовая аппаратура, системы связи и т.п.). Компьютеры стали обладать большими быстродействием, емкостью оперативной памяти, надежностью. Все основные характеристики постоянно улучшались. Существенно были уменьшены размеры, масса и потребляемая мощность.

В компьютерах этого поколения появились методы и приемы программирования, высшей ступенью которых явилось появление систем автоматизации программирования, значительно облегчающих труд математиков-программистов. Большое развитие и применение получили алгоритмические языки, существенно упрощающие процесс подготовки задач к решению. Это привело к созданию библиотек стандартных программ, что позволило строить машинные программы блоками, используя накопленный и приобретенный программистами опыт.

Третье поколение компьютеров (в конце 60-х - начале 70-х годов) характеризуется широким применением интегральных схем. Интегральная схема представляет собой законченный логический и функциональный блок, соответствующий достаточно сложной транзисторной схеме. Благодаря использованию интегральных схем удалось еще более улучшить технические и эксплуатационные характеристики машин. Вычислитель-ная техника стала иметь широкую номенклатуру устройств, которые позволили строить разнообразные системы обработки данных, ориентированные на различные применения.

Отличительной особенностью развития программных средств этого поколения является появление ярко выраженного программного обеспечения и развитие его ядра - операционных систем, отвечающих за организацию и управление вычислительным процессом. Стоимость программного обеспечения стала расти и в настоящее время намного опережает стоимость аппаратуры (рис.13.1). Наибольшая крутизна графика соответствует времени появления операционных систем - началу 80-х годов.

ОС планирует последовательность распределœения и использования ресурсов вычислительной системы, а также обеспечивает их согласованную работу. Под ресурсами обычно понимают те средства, которые применяются для вычислений: машинное время отдельных процессоров или компьютеров, входящих в систему; объёмы оперативной и внешней памяти; отдельные устройства, информационные массивы; библиотеки программ; отдельные программы, как общего, так и специального применения, и т.п. Интересно, что наиболее употребительные функции ОС в части обработки внештатных ситуаций (защита программ от взаимных помех, системы прерываний и приоритетов, служба времени, сопряжение с каналами связи и т.д.) были полностью или частично реализованы аппаратно. Одновременно были реализованы более сложные режимы работы: коллективный доступ к ресурсам, мультипрограммные режимы. Часть этих решений стала своеобразным стандартом и начала использоваться повсœеместно в компьютерах различных классов.

Рис. 13.1. Динамика изменения стоимости аппаратурных и программных средств

Здесь были существенно расширены возможности доступа к ним со стороны абонентов, находящихся на различных, в т.ч. и значительных (десятки и сотни километров) расстояниях. Удобство общения абонента с компьютером достигалось за счёт развитой сети абонентских пунктов, связанных с ним информационными каналами связи, и соответствующего программного обеспечения.

Для компьютеров четвертого поколения (80-е годы) характерно применение больших интегральных схем (БИС). Высокая степень интеграции способствовала увеличению плотности компоновки электронной аппаратуры, усложнению ее функций, повышению надежности и быстродействия, снижению стоимости. Это, в свою очередь, оказало существенное воздействие на логическую структуру компьютера и его программное обеспечение

В четвертом поколении с появлением микропроцессоров (1971 ᴦ.) возник новый класс вычислительных машин - микроЭВМ, на смену которым пришли персональные компьютеры (ПК, начало 80-х годов). В этом классе наряду с БИС стали использоваться сверхбольшие интегральные схемы (СБИС) 32-, а затем 64-разрядности.

Появление ПК - наиболее яркое событие в области вычислительной техники, до последнего времени самый динамично развивающийся сектор отрасли. С их внедрением решение задач информатизации общества было поставлено на реальную основу.

Применение ПК позволило сделать труд специалистов творческим, интересным, эффективным. Коренным образом были преобразованы сферы делопроизводства, торговли, складского учета и т.п. Компьютеры стали использоваться в различных системах управления технологическими процессами, производствами, фирмами, организациями и т.д.

Применение ПК позволило применять новые информационные технологии и создавать системы распределœенной обработки данных. Высшей стадией систем распределœенной обработки данных являются компьютерные (вычислительные) сети различных уровней - от локальных до глобальных.

В своем развитии компьютеры первых четырех поколений не выходили за рамки классической структуры, ориентированной на последовательные вычисления по программе. Но в начале нового тысячелœетия (2005-2006 гᴦ.) в связи с успехами микроэлектроники появились, а затем стали доминировать многоядерные микропроцессоры. Это позволило пе-рейти к параллельным вычислениям даже внутри отдельного компьютера. Де-факто возникли качественно новые по построению и своим возможностям компьютеры следующего поколения. При этом еще в 1980 году появился японский проект создания компьютеров пятого поколения, отличительной особенностью которых должен быть встроенный искусст-венный интеллект. Видимо, несовпадение признаков классификации не позволяет сейчас узаконить переход на компьютеры нового поколения.

В новых компьютерах продолжается усложнение технических и программных структур (иерархия управления средствами, увеличение их количества, параллелизм в работе). Следует указать на заметный рост уровня "интеллектуальности" систем, создаваемых на их основе. Подобные тенденции будут сохраняться и впредь. Так, по мнению исследователœей , новые компьютеры наращивают и совершенствуют встроенный в них "искусственный интеллект", что позволяет пользователям обращаться к ним на естественном языке, вводить и обрабатывать тексты, документы, иллюстрации, создавать системы обработки знаний и т.д. Аппаратная часть компьютеров постоянно усложняется, для них приходится создавать сложное многоэшелонное иерархическое программное обеспечение.

Основные характеристики и классификация компьютеров

Эффективное применение вычислительной техники предполагает, что каждый вид вычислений требует использования компьютера с определœенными характеристиками.

Важнейшими из них служат быстродействие и производительность. Эти характеристики достаточно близки, но их не следует смешивать.

Быстродействие характеризуется числом определœенного типа команд, выполняемых за одну секунду. Производительность - это объём работ (к примеру, число стандартных программ), выполняемый в единицу времени.

Определœение характеристик быстродействия и производительности представляет собой очень сложную инженерную и научную задачу, до настоящего времени не имеющую единых подходов и методов решения. Обычно вместо получения конкретных значений этих характеристик указывают результаты сравнения данных, полученных при испытаниях (тестированиях) различных образцов.

Другой важнейшей характеристикой компьютера является емкость запоминающих устройств . Емкость памяти измеряется количеством структурных единиц информации, ĸᴏᴛᴏᴩᴏᴇ может одновременно находиться в памяти. Этот показатель позволяет определить, какой набор программ и данных должна быть одновременно размещен в памяти.

Наименьшей структурной единицей информации является бит - одна двоичная цифра. Как правило, емкость памяти оценивается в более крупных единицах измерения - байтах (байт равен 8 битам). Следующими единицами измерения служат .

Обычно отдельно характеризуют емкости оперативной и внешней памяти. Сегодня персональные компьютеры имеют емкость оперативной памяти, равную 512Мбайт, 1Гбайт и даже больше. Этот показатель очень важен для определœения, какие программные пакеты и их приложения могут одновременно обрабатываться в машинœе.

Емкость внешней памяти зависит от типа носителя. Так, практически исчезли из обращения дискеты как накопители и средства переноса и хранения данных. На смену им пришла флэш-память, емкость которой должна быть от нескольких Гбайт до Тб. Пока сохраняют свое значение и традиционные накопители. Емкость дисков DVD достигает нескольких десятков Гбайтов, емкость компакт-диска (CD-ROM) - 640 Мб и выше, жестких дисков - сотни Гбайт и т.д. Емкость внешней памяти характеризует объём программного обеспечения и отдельных программных продуктов, которые могут устанавливаться. К примеру, для установки операционной среды Windows 7 исходя из версии требуется объём памяти жесткого диска 160Гб-1Тб и оперативной памяти 1-3Гб.

Надежность - это способность компьютера при определœенных условиях выполнять требуемые функции в течение заданного периода времени (стандарт ISO - 2382/14-78).

Высокая надежность компьютера закладывается в процессе его производства. Переход на новую элементную базу - сверхбольшие интегральные схемы (микропроцессоры и схемы памяти) резко сокращает число используемых интегральных схем, а значит, и число их соединœений друг с другом.

Точность - возможность различать почти равные значения (стандарт ISO 2382/2-76). Точность получения результатов обработки в основном определяется разрядностью компьютера, а также используемыми структурными единицами представления информации (байтом, словом, двойным словом).

Современные компьютеры, включая ПК, имеют возможность работы с 32- и даже с 64-разрядными машинными словами. С помощью языков программирования данный диапазон должна быть увеличен в несколько раз, что позволяет достигать очень высокой точности.

Достоверность - свойство информации быть правильно воспринятой. Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратно-программными средствами контроля. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других компьютерах и сравнение результатов.

Усложнение схем компьютеров приводит к увеличению энергопотребления, что порождает целый ряд проблем. По этой причине для микропроцессоров введена характеристика, отражающая класс мощности (энерго-потребление, TDP - Thermal Design Power, тепловой пакет).

Сегодня в мире произведены, работают и продолжают выпускаться миллионы вычислительных машин, относящиеся к различным поколениям, типам, классам и отличающиеся своими областями применения, техническими характеристиками и вычислительными возможностями.

Основные черты рынка современных компьютеров - разнообразие и динамизм. Практически каждые полтора десятилетия меняется поколение машин, каждые два года _ основные типы микропроцессоров, СБИС, определяющих характеристики новых вычислителœей. Такие темпы сохраняются уже многие годы.

Рынок компьютеров постоянно имеет широкую градацию классов и моделœей. Существует большое количество классификационных признаков, по которым всœе это множество разделяют на группы: по уровням специализации (универсальные и специализированные), по типоразмерам (настольные, портативные, карманные), по совместимости, по типам используемых микропроцессоров и количеству их ядер, по возможностям и назначению и др.
Размещено на реф.рф
. Разделœение компьютеров по поколениям, изложенное в п. 13.1, также является одним из видов классификации. Наиболее часто используют классификацию компьютеров по возможностям и назначению, а в последнее время - и по роли компьютеров в сетях.

По возможностям и назначению компьютеры подразделяют:

· суперЭВМ , необходимые для решения крупномасштабных вычислительных задач, а также для обслуживания крупнейших информационных банков данных.

С развитием науки и техники постоянно выдвигаются новые крупномасштабные задачи, требующие выполнения больших объёмов вычислений. Особенно эффективно применение суперЭВМ при решении задач проектирования, в которых натурные эксперименты оказываются дорогостоящими, недоступными или практически неосуществимыми. СуперЭВМ по сравнению с другими типами машин позволяют точнее, быстрее и качественнее решать крупные задачи, обеспечивая необходимый приоритет в научных выработках, в т.ч. и в перспективной вычислительной технике.

Неудивительно, что мощные компьютеры являются особым достоянием любого государства. В Интернете отслеживается список пятисот самых мощных компьютеров мира (top500.org). Их выработка возведена в ранг государственной политики ведущих в экономическом отношении стран и является одним из важнейших направлений развития науки и техники. Список top500 сейчас возглавляют китайский компьютер Tianhe-1A и компьютер Cray XT5-HE Jaguar, с быстродействием соответственно 2,67 и 1,759 PFLOP (1 петафлоп= оп/с). В списке top500 имеются суперкомпьютеры, используемые в России. Их число возросло до одиннадцати штук, и Россия вышла на 7-ое место. Пятьдесят самых мощных компьютеров России отслеживаются на отечественном сайте http//supercomputers.ru (список top50);

  • большие ЭВМ , предназначенные для комплектования ведомственных, территориальных и региональных вычислительных центров (министерства, государственные ведомства и службы, крупные банки и т.д.). Примером подобных машин, а точнее, систем, могут служить компьютеры, предназначенные для обеспечения научных исследований, для построения рабочих станций для работы с графикой, UNIX-серверов, кластерных комплексов;
  • средние ЭВМ , широко используемые для управления сложными технологическими и производственными процессами (банки, страховые компании, торговые дома, издательства). Компьютеры этого типа могут применяться и для управления распределœенной обработкой информации в качестве сетевых серверов;
  • персональные и профессиональные компьютеры (ПК) , позволяющие удовлетворить индивидуальные потребности пользователœей. На базе этого класса ЭВМ строятся автоматизированные рабочие места (АРМ) для специалистов различного уровня. К настоящему времени в развитых странах ниша ПК практически заполнилась;
  • мобильные и карманные компьютеры . Появление микропроцессоров способствовало разработке на их базе разнообразных устройств, используемых в различных областях жизнедеятельности человека: мобильная связь, бытовая техника, авто, игровые приставки, электронные записные книжки т.п. Аналитики предсказывают их прогрессирующее развитие на ближайшие 5-10 лет .

Появлению новых устройств способствуют следующие факторы:

  • экономические - новые устройства успешно конкурируют со старыми, традиционными. К примеру, сотовая связь уверенно отвоевывает клиентов обычной телœефонной связи;
  • технологические - новые технологии обеспечивают качественно новые услуги (мобильный офис, телœеконференции, предложение товаров от ближайших поставщиков и т.д.);
  • социальные - мобильные телœефоны и досуг с использованием Интернета становятся стилем жизни;
  • бизнес-факторы - бизнес требует новых типов предложений под лозунгами "Услуги в любое время и в любом месте" и предоставления каждому "Своего офиса в кармане".

Рассмотрим упрощенную градацию подобных устройств.

Ноутбуки (Notebooks) . Совершенствование микропроцессоров привело к созданию мощных, дружественных и малогабаритных компьютеров, вполне способных обеспечить создание мобильного офиса различного класса с ориентацией на электронную почту, передачу факсов, доступ в Интернет. Интересно, что кризис IT-рынка почти не затронул сектор ноутбуков. Их производство устойчиво и вытесняет обычные ПК. Конфигурации ноутбуков обеспечивают широкие возможности. Ценовой диапазон - от 0,5 до 3-4 тысяч долларов. Миниатюрные ноутбуки позволяют решать практически всœе задачи, присущие настольным ПК, они обладают теперь достаточной мощностью, расширяемостью и гибкостью. Но пока они еще достаточно дороги, и время их автономной работы огра-ничено несколькими часами.

Младшей разновидностью ноутбуков следует считать UMPC (ultra-mobile PC, ультрамобильный ПК). В случае если UMPC достаточно дороги, то проект OLPC (One Laptop per Child - "По ноутбуку каждому ребенку") имеет целью развитие инфраструктуры беднейших стран мира. Согласно ему небольшие компьютеры, стоимостью менее 100$, должны в массовом количестве поставляться в беднейшие страны Африки, Азии и Латинской Аме-рики. Пока не удается снизить стоимость компьютеров ниже 150-200$.

Конкурентом младших моделœей ноутбуков следует считать нетбуки (netbooks) , ориентированные на работу с сетевыми ресурсами Интернета. Οʜᴎ появились 2-3 года назад, но по числу продаж уже сравнялись с ноутбуками. Их производство набирает силу.

Карманные персональные компьютеры (КПК) . Эти компьютеры ориентированы на выполнение в основном информационных функций. Οʜᴎ имеют очень широкую номенклатуру и градацию. Центральной функцией этих устройств являлось обеспечение мобильной связи. Еще 5-7 лет назад компьютеры этого типа рассматривали как конкурентов ноутбуков, однако реальность показывает, что они должны в ближайшем будущем уступить место коммуникаторам, смартфонам и специализированным устройствам (для навигации или специального применения). Сегодня границу между различными типами этих устройств тяжело провести. Коммуникатор - это упрощенный КПК, дополненный функциональностью мобильного телœефона. От мобильного телœефона он отличается на-личием установленной развитой операционной системы. Обычно особенности управления телœефонами изготовителями не разглашаются.

Широкое распространение получили устройства, называемые смартфонами. Смартфоны (умные телœефоны), обрастая новыми функциями, способны заменить целый класс специализированных устройств и являются их киллерами.

Сегодня почти 50% населœения Земли имеет мобильные телœефоны. Современный телœефон стоимостью в 100$ оснащен цветным экраном, встроенным фотоаппаратом с разрешением 5-7 Мпикселов, ауди-оплеером. Некоторые из них способны вести видеосъемки, просматривать видеофильмы, иметь игротеки. Некоторые способны заменить библиотеку, компьютер с доступом в Интернет и E-mail.

Встраиваемые микропроцессоры , осуществляющие автоматизацию управления отдельными устройствами и механизмами. Успехи микроэлектроники позволяют создавать миниатюрные вычислительные устройства, вплоть до однокристальных ЭВМ. Эти устройства, универсальные по характеру применения, могут встраиваться в отдельные машины, объекты, системы. Οʜᴎ находят всœе большее применение в бытовой технике (телœе-фонах, телœевизорах, электронных часах, микроволновых печах и т.д.), в городском хозяйстве (энерго-, тепло-, водоснабжении, регулировке движения транспорта и т.д.), на производстве (робототехнике, управлении технологическими процессами). Постепенно они входят в нашу жизнь, всœе больше изменяя среду обитания человека.

Высокие скорости вычислений позволяют перерабатывать и выдавать всœе большее количество информации, что, в свою очередь, порождает потребности в создании связей между отдельно используемыми вычислителями. По этой причине всœе современные компьютеры в настоящее время имеют средства подключения к сетям связи и объединœения в системы. С развитием сетевых технологий всœе больше начинает использоваться другой классификационный признак, отражающий их место и роль в сети. Согласно ему предыдущая классификация отражается на сетевой среде:

  • мощные машины, включаемые в состав сетевых вычислительных центров и систем управления гигантскими сетевыми хранилищами информации;
  • кластерные структуры;
  • серверы;
  • рабочие станции;
  • сетевые компьютеры.

Мощные машины и системы предназначаются для обслуживания крупных сетевых банков данных и банков знаний. По характеристикам их можно отнести к классу суперЭВМ, но в отличие от них они являются более специализированными и ориентированными на обслуживание мощных потоков информации.

Кластерные структуры представляют из себямногомашинные распределœенные вычислительные системы, объединяющие под единым управлением несколько серверов. Это позволяет гибко управлять ресурсами сети, обеспечивая необходимую производительность, надежность, готовность и другие характеристики.

Серверы - это вычислительные машины и системы, управляющие определœенным видом ресурсов сети. Различают файл-серверы, серверы приложений, факс-серверы, почтовые, коммуникационные, веб-серверы и др.

Термин "рабочая станция" отражает факт наличия в сетях абонентских пунктов, ориентированных на работу профессиональных пользователœей с сетевыми ресурсами. Этот термин как бы отделяет их от ПК, которые обеспечивают работу основной массы непрофессиональных пользователœей, работающих обычно в автономном режиме.

Сетевые компьютеры . На базе существующих стандартных микропроцессоров появляется новый класс устройств, получивший это название. Само название говорит о том, что они предназначаются для использования в компьютерных сетях. Учитывая зависимость отвыполняемых функций и от контекста под этим термином понимают совершенно различные устройства, от простейшего компьютера-наладонника до специализированных сетевых устройств типа "маршрутизатор", "шлюз", "коммутатор" и т.п.

Число приведенных типов компьютеров в индустриально развитых странах образует некое подобие пирамиды с определœенным соотношением численности каждого слоя. Распределœение вычислительных возможностей по слоям должно быть сбалансировано.

История и тенденции развития вычислительной техники - понятие и виды. Классификация и особенности категории "История и тенденции развития вычислительной техники" 2017, 2018.

- 49.08 Кб

Первой волной компьютерной революции принято считать появление мэйнфреймов, предоставивших предприятиям доступ к огромным информационным ресурсам. На этом этапе весомую роль сыграла компания IBM. Ее унаследованные системы и сегодня все еще широко применяются различными организациями по всему миру.

Вторая волна связана с распространением персональных компьютеров в начале 80-х годов. Благодаря ПК, информационные технологии стали доступными для конечных пользователей, что дает основание называть данный этап "демократизацией вычислений". Важнейшая роль здесь принадлежит корпорации Microsoft, разработавшей самые популярные ОС для настольных систем.

Инвестиции в инфраструктуру и сервисы Интернет вызвали бурный рост отрасли информационных технологий в конце 90-х годов XX века. Сегодня наблюдается бурное развитие локальных и глобальных сетей. Сетевые возможности становятся обязательными атрибутами ОС (операционной системы) для ПК, а сетевые серверные ОС - ареной конкурентной борьбы ведущих компаний. Новый этап должен привести к качественному изменению всего характера вычислений.

Мы стоим на пороге третьего этапа компьютерной революции, которая приведет к реализации возможности непрерывного обмена информацией через глобальные сети. В этом случае накопленные знания станут доступными в электронной форме и будут передаваться по сетям, универсальный доступ к глобальной сети фундаментально изменит современные методы работы, образования, управления, способы проведения досуга и характер развлечений.

Переходу к новому этапу способствует и сама технология. По мнению специалистов, в течение ближайшего десятилетия базовые компьютерные технологии не столкнутся с существенными физическими ограничениями, что позволит наращивать вычислительную мощность микропроцессоров и емкость устройств дисковой памяти теми же темпами, что и сегодня. В то же время для микропроцессоров, памяти, программного обеспечения определяющей является технология коммуникаций. По мере наращивания мощности клиентов и серверов необходимость в быстрой передаче больших объемов данных становится все более острой, поэтому следующим этапом должны стать наращивание мощности сетевых технологий. Эволюция средств связи приводит к применению каналов со все более высокой пропускной способностью, что даст возможность передавать по ним все типы данных и обеспечить такими средствами каждый дом. Что касается программного обеспечения, то оно превратится в среду интеллектуальной поддержки, направляющую действия пользователей.

Для персональных компьютеров различных видов современные сети предлагают такие услуги, которые еще вчера трудно было представить, включая новые возможности телевидения и развитые системы защиты. Электроника все шире будет использоваться в быту, наделяя "интеллектом" не только теле-, радио- и видеоаппаратуру, но и самые обычные предметы. Развиваемые технологии позволят подключить данные устройства к сети, используя для этого всю существующую инфраструктуру, включая кабельное телевидение и обычную электросеть.

Глобальная коммуникационная сеть, как Internet неуклонно расширяется, приобретая все более важное значение и новые функции. Она все чаще применяется не только для поиска информации и коммуникаций, но и для обучения, электронной коммерции и в других областях, знаменуя начало формирования глобального сетевого сообщества.

Развитие информационных технологий в значительной степени определяет процессы интеграции систем и создания стандартов. Это может в существенной мере отодвинуть сроки воплощения в жизнь тех преимуществ, которые предоставляют новейшие технологии. Например, выполнение программы создания и совершенствования компьютеров пятого поколения, финансируемой японскими фирмами, сдерживается тем, что новая архитектура программного обеспечения пока не сочетается с существующими центрами искусственного интеллекта, новые протоколы не могут быть использованы в старых системах связи, а новые машинные языки не подходят для старых систем и т.д.

Еще одной тенденцией развития информационных технологий является глобализация информационного бизнеса. Чисто теоретически любой человек (или фирма) является сегодня потребителем информации. Поэтому возможности информационного рынка по- прежнему являются беспредельными, хотя и существует довольно жесткая конкуренция между основными производителями.

Таким образом, главными, определяющими стимулами развития информационной технологии, являются социально-экономические потребности общества. Экономические отношения накладывают свой отпечаток на процесс развития техники и технологии, либо давая ему простор, либо сдерживая его в определенных границах.

Техника и технология в своем развитии имеют эволюционные и революционные стадии и периоды. Вначале обычно происходит медленное постепенное усовершенствование технических средств и технологии, накопление этих усовершенствований является эволюцией.

Современные тенденции развития средств вычислительной техники

По прогнозам аналитиков, к 2012 году число транзисторов в микропроцессоре достигнет 1 млрд., тактовая частота возрастет до 10 ГГц, а производительность достигнет 100 млрд.оп/с.

Рассмотрим основные направления развитие микропроцессоров.

1. Повышение тактовой частоты.

Для повышения тактовой частоты при выбранных материалах используются: более совершенный технологический процесс с меньшими проектными нормами; увеличение числа слоев металлизации; более совершенная схемотехника меньшей каскадности и с более совершенными транзисторами, а также более плотная компоновка функциональных блоков кристалла.

Так, все производители микропроцессоров перешли на технологию КМОП, хотя Intel, например, использовала БиКМОП для первых представителей семейства Pentium. Известно, что биполярные схемы и КМОП на высоких частотах имеют примерно одинаковые показатели тепловыделения, но КМОП-схемы более технологичны, что и определило их преобладание в микропроцессорах.

Уменьшение размеров транзисторов, сопровождаемое снижением напряжения питания с 5 В до 2,5-3 В и ниже, увеличивает быстродействие и уменьшает выделяемую тепловую энергию. Все производители микропроцессоров перешли с проектных норм 0,35-0,25 мкм на 0,18 мкм и 0,12 мкм и стремятся использовать уникальную 0,07 мкм технологию.

Год производства


При минимальном размере деталей внутренней структуры интегральных схем 0,1-0,2 мкм достигается оптимум, ниже которого все характеристики транзистора быстро ухудшаются. Практически все свойства твердого тела, включая его электропроводность, резко изменяются и "сопротивляются" дальнейшей миниатюризации, возрастание сопротивления связей происходит экспоненциально. Потери даже на кратчайших линиях внутренних соединений такого размера "съедают" до 90% сигнала по уровню и мощности.

При этом начинают проявляться эффекты квантовой связи, в результате чего твердотельное устройство становится системой, действие которой основано на коллективных электронных процессах. Проектная норма 0,05-0,1 мкм (50-100 нм) - это нижний предел твердотельной микроэлектроники, основанной на классических принципах синтеза схем.

Уменьшение длины межсоединений актуально для повышения тактовой частоты работы, так как существенную долю длительности такта занимает время прохождения сигналов по проводникам внутри кристалла. Например, в Alpha 21264 предприняты специальные меры по кластеризации обработки, призванные локализовать взаимодействующие элементы микропроцессора.

Проблема уменьшения длины межсоединений на кристалле при использовании традиционных технологий решается путем увеличения числа слоев металлизации. Так, Cyrix при сохранении 0,6 мкм КМОП технологии за счет увеличения с 3 до 5 слоев металлизации сократила размер кристалла на 40% и уменьшила выделяемую мощность, исключив существовавший ранее перегрев кристаллов.

Одним из шагов в направлении уменьшения числа слоев металлизации и уменьшения длины межсоединений стала технология, использующая медные проводники для межсоединений внутри кристалла, разработанная фирмой IBM и используемая в настоящее время и другими фирмами-изготовителями СБИС.

Впервые рубеж тактовой частоты в 500 МГц перешагнули микропроцессоры фирмы DEC, которая уже в конце 1996 г. поставляла Alpha 21164 с тактовой частотой 500 МГц, в 1997 г. - Alpha 21264 с тактовой частотой 600 МГц, а в 1998 г. - Alpha 21264 с тактовой частотой 750 МГц и выше. В настоящее время ряд фирм выпускает процессоры для персональных компьютеров с тактовой частотой свыше 4 ГГц.

Увеличение объема и пропускной способности подсистемы памяти.

Возможные решения по увеличению пропускной способности подсистемы памяти включают создание кэш-памяти одного или нескольких уровней, а также увеличение пропускной способности интерфейсов между процессором и кэш-памятью и конфликтующей с этим увеличением пропускной способности между процессором и основной памятью. Совершенствование интерфейсов реализуется как увеличением пропускной способности шин (путем увеличения частоты работы шины и/или ее ширины), так и введением дополнительных шин, расшивающих конфликты между процессором, кэш-памятью и основной памятью. В последнем случае одна шина работает на частоте процессора с кэш-памятью, а вторая - на частоте работы основной памяти. При этом частоты работы второй шины, например, равны 66, 66, 166 МГц для микропроцессоров Pentium Pro-200, Power PC 604E-225, Alpha 21164-500, работающих на тактовых частотах 300, 225, 500 МГц, соответственно. При ширине шин 64, 64, 128 разрядов это обеспечивает пропускную способность интерфейса с основной памятью 512, 512, 2560 Мбайт/с, соответственно.

Общая тенденция увеличения размеров кэш-памяти реализуется по-разному:

внешние кэш-памяти данных и команд с двухтактовым временем доступа объемом от 256 Кбайт до 2 Мбайт со временем доступа 2 такта в HP PA-8000;

отдельный кристалл кэш-памяти второго уровня, размещенный в одном корпусе в Pentium Pro;

размещение отдельных кэш-памяти команд и кэш-памяти данных первого уровня объемом по 8 Кбайт и общей для команд и данных кэш-памяти второго уровня объемом 96 Кбайт в Alpha 21164.

Наиболее используемое решение состоит в размещении на кристалле отдельных кэш-памятей первого уровня для данных и команд с возможным созданием внекристальной кэш-памяти второго уровня. Например, в Pentium II использованы внутрикристальные кэш-памяти первого уровня для команд и данных по 16 Кбайт каждая, работающие на тактовой частоте процессора, и внекристальный кэш второго уровня, работающий на половинной тактовой частоте.

Увеличение количества параллельно работающих исполнительных устройств.

Каждое семейство микропроцессоров демонстрирует в следующем поколении увеличение числа функциональных исполнительных устройств и улучшение их характеристик, как временных (сокращение числа ступеней конвейера и уменьшение длительности каждой ступени), так и функциональных (введение ММХ-расширений системы команд и т.д.).

В настоящее время процессоры могут выполнять до 6 операций за такт. Однако число операций с плавающей точкой в такте ограничено двумя для R10000 и Alpha 21164, а 4 операции за такт делает HP PA-8500.

Для того чтобы загрузить функциональные исполнительные устройства, используются переименование регистров и предсказание переходов, устраняющие зависимости между командами по данным и управлению, буферы динамической переадресации.

Широко используются архитектуры с длинным командным словом - VLIW. Так, архитектура IA-64, развиваемая Intel и HP, использует объединение нескольких инструкций в одной команде (EPIC). Это позволяет упростить процессор и ускорить выполнение команд. Процессоры с архитектурой IA-64 могут адресоваться к 4 Гбайтам памяти и работать с 64-разрядными данными. Архитектура IA-64 используется в микропроцессоре Merced, обеспечивая производительность до 6 Гфлоп при операциях с одинарной точностью и до 3 Гфлоп - с повышенной точностью на частоте 1ГГц.

Системы на одном кристалле и новые технологии.

В настоящее время получили широкое развитие системы, выполненные на одном кристалле - SOC (System On Chip). Сфера применения SOC - от игровых приставок до телекоммуникаций. Такие кристаллы требуют применения новейших технологий.

Основной технологический прорыв в области SOC удалось сделать корпорации IBM, которая в 1999 году смогла реализовать сравнительно недорогой процесс объединения на одном кристалле логической части микропроцессора и оперативной памяти. В новой технологии, в частности, используется так называемая конструкция памяти с врезанными ячейками (trench cell). В этом случае конденсатор, хранящий заряд, помещается в некое углубление в кремниевом кристалле. Это позволяет разместить на нем свыше 24 тыс. элементов, что почти в 8 раз больше, чем на обычном микропроцессоре, и в 2-4 раза больше, чем в микросхемах памяти для ПК. Следует отметить, что хотя кристаллы, объединяющие логические схемы и память на одном кристалле, выпускались и ранее, например, такими фирмами, как Toshiba, Siemens AG и Mitsubishi, подход, предложенный IBM, выгодно отличается по стоимости. Причем ее снижение никоим образом не сказывается на производительности.

Описание работы

На протяжении всей истории человечество овладело сначала веществом, затем энергией и, наконец, информацией. На заре цивилизации человеку хватало элементарных знаний и первобытных навыков, но постепенно объем информации увеличивался, и люди почувствовали недостаток индивидуальных знаний. Потребовалось научиться обобщать знания и опыт, которые способствовали правильной обработке информации и принятию необходимых решений, иными словами, необходимо было научиться целенаправленно работать с информацией и использовать для ее получения, обработки и передачи

Направления развития компьютерной техники .( тенденции)

На данный момент активно ведутся разработки молекулярных устройств, оптических и квантовых компьютеров, а также ДНК-компьютеров.

В основе молекулярных компьютеров лежат бистабильные молекулы, которые могут находится в двух устойчивых термодинамических состояниях. Каждое такое состояние характеризуется своими химическими и физическими свойствами. Переводить молекулы из одного состояния в другое можно с помощью света, тепла, химических агентов, электрических и магнитных полей. По сути, эти молекулы являются транзисторами размером в несколько нанометров.

Благодаря малым размерам бистабильных молекул можно увеличить количество элементов на единицу площади. Другим достоинством молекул является малое время отклика, которое составляет порядка 10 -15 с. Соединяют функциональные элементы нанотрубки или сопряженные полимеры.

Другой тип компьютеров нового поколения также основан на молекулах, но уже молекулах ДНК . Впервые ДНК–вычисления были проведены в 1994 г. Леонардом Эдлеманом, профессором Университета Южной Калифорнии, для решения задачи торгового агента. В ДНК-компьютерах роль логических вентилей играют подборки цепочек ДНК, которые образуют друг с другом прочные соединения. Для наблюдения состояния всей системы в последовательность внедрялись флуоресцирующие молекулы. При определенных сочетаниях свечения молекул подавляли друг друга, что соответствовало нулю в двоичной системе. Единице же соответствовало усиленное свечение флюоресцентов. Возможно строить последовательности цепочек, в которых выходной сигнал одной цепочки служит входным сигналом другой.

Главное достоинство такого компьютера - работоспособность внутри тела человека, что дает возможность, например, осуществлять подачу лекарства там, где это необходимо. Также такие компьютеры позволят моментально производить идентификацию заболеваний в организме.

Еще два варианта КОМПЬЮТЕРА БУДУЩЕГО - фотонный и квантовый компьютеры. Первый работает на оптических процессах, и все операции в нем выполняются посредством манипуляции оптическим потоком. Преимущества такого компьютера заключаются в свойствах световых потоков. Скорость их распространения выше, чем у электронов, к тому же взаимодействие световых потоков с нелинейными средами не локализовано, а распределено по всей среде, что дает новые степени свободы (по сравнению с электронными системами) в организации связей и создании параллельных архитектур. Производительность оптического процессора может составлять 10 13 -10 15 операций в секунду. На сегодняшний день есть прототипы оптических процессоров, способные выполнять элементарные операции, но полноценных и готовых к производству компьютеров нет.


Квантовый компьютер основан на законах квантовой механики. Для выполнения операций квантовый компьютер использует не биты, а кубиты - квантовые аналоги битов. В отличие от битов, кубиты могут одновременно находится в нескольких состояниях. Такое свойство кубитов позволяет квантовому компьютеру за единицу времени проводить больше вычислений. Область применения квантового компьютера – переборные задачи с большим числом итераций.

КВАНТОВЫЙ КОМПЬЮТЕР - проблема создания

Все прототипы компьютеров будущего – ДНК-компьютеры, молекулярные и фотонные - разные грани одного целого - идеи создания полнофункционального квантового компьютера. Все микрочастицы, будь то кванты, атомы или молекулы - могут быть описаны волновой функцией состояния и подчиняются единым законам квантовой механики. Таким образом, работы над каждым типом компьютеров базируются на одном фундаменте. Но у них есть и общие проблемы. Необходимо научиться объединять частицы в совокупности и работать как с каждой частицей в отдельности, так и с совокупностью в целом. К сожалению, на сегодняшний день технологии не позволяют производить такие манипуляции. К тому же система управления должна поддерживать масштабируемость системы частиц, благодаря которой можно наращивать мощность компьютера. Решение этой проблемы станет очередным прорывом в науке. Над созданием квантового компьютера работают в лабораториях всего мира, в том числе и российских. Например, с 2001 года в Казанском физико-техническом институте начали вести работы в области квантовой памяти и на сегодняшний день исследуют новые твердотельные материалы, пригодные для хранения кубитов. Также решается задача длительности хранения информации, но пока что это время составляет всего несколько миллисекунд. Сергей Моисеев - ведущий научный сотрудник Казанского физико-технического института прокомментировал ситуацию с созданием квантового компьютера так: «Насколько я себе представляю, дело в том, что сложность этой проблемы была не сразу осознана. После того как был проведен первый цикл исследований, были сформулированы проблемы, в том числе и физические, которые предстояло решить. На данный момент создание квантового компьютера напоминает своего рода современный Манхэттенский проект. Цель - создать квантовый компьютер, оперирующий 1000 кубитами, с возможностью его масштабируемости».

Однако развитие квантового компьютера тормозят не только технические проблемы, но и экономические. Долгое время на решение этой задачи выделялось крайне мало средств, особенно в России. Инновационный проект, в случае его успеха, начнет приносить доход лишь спустя длительное время, при этом на этапе старта потребуются крупные капиталовложения. Сейчас, когда преимущества квантового компьютера стали очевидны, начали появляться и инвестиции, но их доля относительно других отраслей по-прежнему невелика.

Что же касается текущей ситуации в мире, то уже есть модель, работающая на двух кубитах. Конечно это не 1000, к которым стремятся ученые, но он уже может найти множители, на которые разлагается число. Потенциал же килокубитного квантового компьютера огромен. Он сможет за минуты просчитывать данные, на которые у нынешних систем уйдут годы, а то и десятилетия. С точки зрения информационной безопасности, как только будет построен квантовый компьютер, все системы защиты данных с открытым ключом рухнут, так как квантовый алгоритм позволяет быстро взломать коды. Самый производительный современный компьютер, если и решит эту задачу, то за несколько лет. Сегодня криптозащита держится только по той причине, что квантовый компьютер находится в самом начале своего развития и 2-3-х кубитов не достаточно для взлома шифров.

Предвидя такое развитие событий, компании задумываются о квантовой криптографии, против которой компьютер нового поколения будет бессилен. Особенность квантовой криптозащиты в том, что при попытке «подслушать» информацию она разрушается по закону неопределенности Гейзенберга. Таким образом, при попытке получить доступ к зашифрованному потоку, информация в нем будет утеряна. Однако не стоит считать неуязвимость квантовой криптозащиты абсолютной, как и в любой системе, в ней есть свои слабые места.

Специалисты утверждают, что ближайшая реализация квантового компьютера - система finger printing в научном мире известная, как метод характеристических признаков. Она будет содержать примерно 20-30 кубитов и предназначена для выделения «струны» – последовательности данных из базы данных, содержащей небольшой бит информации с некими характерными признаками. И если сравнить эту «струну» со «струной» из другой базы, то с определенной долей вероятности можно определить, одинаковые эти базы данных или нет. В течение нескольких ближайших лет фирма HP собирается представить такой компьютер, работающий на квантовых точках. Нити с определенной вероятностью довольно точно описывают исходную базу. И если две выбранные последовательности признаков совпадают, то можно предположить, что и исходные базы данных одинаковы. Например, при сканировании сетчатки глаза в системе контроля доступа можно снимать информацию не обо всей сетчатке, а только определенные параметры. Совокупность таких параметров и будет «струной». Квантовый компьютер не будет конкурентом нынешним, скорее, он предназначен для решения задач с огромным количеством исходной информации и большим числом переменных. Такие задачи характерны для систем криптографии и безопасной передачи данных, биологии и медицины, моделирования квантовых систем, оптимизации различных процессов.